Roll No.:....

B037412(037)

B. Tech. (Fourth Semester) Examination April-May 2021

(Mechanical Engg. Branch)

FLUID MECHANICS

Time Allowed: Three hours

Maximum Marks: 100

Minimum Pass Marks: 35

Note: Attempt all questions. Part (a) from each question is compulsory. Attempt any two parts from (b), (c) and (d) of each question.

- 1. (a) (i) Distinguish between ideal fluids and real fluids.
 - (ii) Define comprssibility. How is it related to bulk modulus of elasticity?

PTO

(b) What is differential manometer? Explain the working principle of U-tube differential manometer with the help of a sketch.

8

(c) A cubical tank has sides of 2 m. It contains an oil of density 850 kg/m³ for the upper 1.2 m depth. The power remaining part is filled with water. For one vertical side of the tank. Find the total pressure and position of centre of pressure.

8

(d) A wooden block C (specific gravity 0.8) of dimensions 1 m \times 0.5 m \times 0.4 m floats in water with its shortest axis vertical. Determine the metacentric height and state the condition of its equilibrium.

2. (a) (i) What do you mean by uniform and non-uniform flow of fluids?

(ii) Define flow net. ment out your zonne the construct made

(b) Derive an expression for continuity for threedimensional flow and reduce it for steady, incompressibe two-dimensional flow.

B037412(037)

(c) The velocity vector in a fluid flow is given

$$V = 4 x^3 i - 10 x^2 yj + 2 tk$$

Find the velocity and acceleration of a fluid particle (2, 1, 3) at time t = 1.

(d) In a two dimensional incompressible flow, the fluid velocity components are given by

$$u = x - 4y$$
 in to higher althouse and a six

and
$$v = -y - 4x$$

show that velocity potential exists and determine its form. Find also the stream function.

(a) Briefly explain impulse momentum equation.

(b) Derive Euler's equation of motion along a stream line.

8

(c) Determine the rate of flow of water through a pipe of 300 mm diameter placed in an inclined position where a venturimeter is inserted, having a throat diameter of 150 mm. The difference of pressure between the main and throat is measured by a liquid of specific gravity 0.7 in an inverted U-tube which gives a reading of 260 mm. The loss of head between the main and throat is 0.3 times the kinetic head of the pipe.

PTO

(d)	In a 45° bend rectangular air duct of 1 m ² cross-	
	sectional area is gradually reduced to 0.5 m ² area.	
	Find the magnitude and direction of force required	
	to hold the duct in position if the velocity of flow at	
	1 m ² section is 10 m/s, and pressure is 30 kN/m ² .	
	Take the specific weight of air as 0.0116 kN/m ³ .	8
	a k - t - = x lum	
(a)	Discuss water hammer in pipes.	4
(b)	A lubricating oil of viscosity 1 poise and specific	
	gravity 0.9 is pumped through a 30 mm diameter	
	pipe.	
	If the pressure drop per meter length of pipe is	
	20 kN/m², determine :	
	(i) The mass flow rate in kg/min	
	(ii) The shear stress at the pipe wall	
	(iii) The reynolds number of flow and	
	(iv) The power required per 50 m length of the pipe	
	to maintain the flow	8
(c)	Derive Darcy-Weisbach equation.	8
	Two reservoirs are connected by a pipeline consisting	
(~ /	THO I POPE TO A DISCOURS OF A PERSONAL POPULAR POPULAR POPULAR PROPERTY OF THE PERSONAL POPULAR POPULA	

4.

of two pipes, one of 15 cm diameter and length 6 m_1 and other of diameter 22.5 cm and 16 m length. If the difference of water levels in the two reservoirs is 6 m, calculate the discharge and draw the energy gradient line. Take f = 0.04.

- 5. (a) What is dimensional analysis? What are the uses of dimensional analysis?
 - (b) Using Buckingham's π -theorem. show that the velocity through a circular orifice is given by

$$V = \sqrt{2 gH} \phi \left[\frac{D}{H}, \frac{\mu}{9 \vee H} \right]$$

Where H is the head causing flow? D is the diameter of the orifice, μ is the co-efficient of viscosity, g is the mass density and g is the acceleration due to gravity.

- (c) Define and give significance of following dimensionless numbers. Develop mathematical expression for the
 - (i) Reynolds number
 - (ii) Mach number

8

8

- (iii) Euler number To Colon and Augin Old To Colon
 - (iv) Froude number

8

(d) An oil of specific gravity 0.9 and viscosity 0.003 $\frac{N}{m^2}$ s is required to transport through a pipe of 1 m diameter at the rate of 0.3 m³/sec. Tests were conducted on a 10 mm diameter pipe using water at 20° C.

The density and viscosity of water at 20° C are 1000 kg/m^3 and $0.001 \frac{N}{m^2}$ s, respectively. Determine the average velocity and rate of flow in the model.

8

8

ove semiletimes of following dimension

andrough shipoper

(ii) Much number